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Lagrangian quantum theory IV. Schouten concomitants and 
the Dirac problem 

F J Blooret 
Department of Physics, Dalhousie University, Halifax, Nova Scotia, Canada 

Received 30 Ju ly  1974 

Abstmct. We formulate Hamilton’s principle of stationary action in classical mechanics 
using the Lie algebra of Schouten concomitants of symmetric contravariant tensor fields 
on the configuration space of the system. Such a formulation is global and coordinate free. 
We show that a directly parallel formulation holds in quantum mechanics so long as all 
the Poisson brackets involved can be replaced in the quantum version by commutators in 
a canonical way. We discuss an example (where the Hamiltonian possesses a velocity- 
dependent potential) in which this cannot be done, and conclude that in this case the action 
is stationary only for a subclass of variations, namely those corresponding to Killing vector 
fields on the configuration manifold. 

1. Introduction 

This paper continues the series (Bloore et a/ 1973, Bloore and Routh 1973,1974a) on the 
formulation of a Hamiltonian principle of stationary action for (holonomic) quantum- 
mechanical systems with a finite number of degrees of freedom. In the previous paper 
of the series (Bloore and Routh 1974a) we formulated such a principle in the case when 
the term in the Hamiltonian which was quadratic in the momentum had the form 
igiJ(q)pipj  where gij  is the m‘etric tensor of the (Riemannian) configuration space M of 
the system. That work is shown here to rest heavily on the fact that all the commutators 
which were needed were in a sense ‘canonical’. That is to say, all Poisson brackets 
which were used in the classical theory became commutator brackets in the quantized 
version. Now it is well known (and discussed in connection with the present theory by 
Bloore and Routh (1974b)) that it is not possible to arrange for all commutators to be 
canonical. (The problem of making quantum-mechanical quantities from classical 
ones such. that Poisson brackets turn into commutator brackets is called the Dirac 
problem.) We shall exhibit a Hamiltonian which is sometimes used in nuclear physics 
(one with a quadratic term # I ~ - ’ ( q ) ) ~ j p # ~  with h # g ,  corresponding to a ‘velocity- 
dependent potential’ (Kiang et a1 1969)) for which the corresponding action cannot be 
stationary for all variations of the class obtained in paper 111, but only for some, namely 
those which correspond to Killing vector fields on the configuration manifold. We show 
that this restriction results from the fact that the commutator of this Hamiltonian with 
the momentum along a vector field X is non-canonical unless X is Killing. 

In $ 2  we present the passage from classical Hamiltonian mechanics to classical 
Lagrangian mechanics using the Lie algebra d of symmetric contravariant tensor fields 
t Permanent address : Department of Applied Mathematics and Theoretical Physics, The University, 
Liverpool, UK. 
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which has the Schouten bilinear concomitant as Lie product. To each vector field X on 
the configuration manifold M of the system we define an associated 'variation' a,, of 
the tensor fields in d. This map a,, is actually a map defined on the enveloping algebra 
of d and is equivalent to the usual variation employed in classical Lagrangian mechanics. 
We obtain the Euler-Lagrange equation from the condition that the action 

lr L d t  

be stationary for the variation Although this equation involves X, we show that 
for a time development prescribed by a given arbitrary quadratic Hamiltonian, we 
can 'solve' the Euler-Lagrange equation to find the Lagrangian in terms of the Hamil- 
tonian in such a way that the equation is satisfied for all variations Hence the action 
defined by this Lagrangian is stationary for all a C x .  

This formulation of classical mechanics, being global and coordinate independent, 
allows the straightforward transposition into quantum mechanics which was made in 
paper I11 for the case h = g. We show here that the Euler-Lagrange equatibn can be 
solved for the Lagrangian in the quantum-mechanical case in such a way that it holds 
for all variations a,, only if the Schouten concomitants are related to the commutator 
brackets in the canonical way. Whereas this is indeed the case when h = g, it is not the 
case otherwise. If h # g, it is only possible to satisfy the Euler-Lagrange equation for 
variations which correspond to Killing vector fields, since the commutator of the quantum- 
mechanical observables which correspond to the classical functions ( h -  l (q)) i jpipj  and 
Xi(q)p i  are canonical for all second-order tensors h -  '(4) only if X is Killing. 

2. Classical mechanics using concomitants 

We wish to describe the transformation from the Hamiltonian to the Lagrangian 
formulation of classical mechanics using the Schouten concomitant algebra of symmetric 
contravariant tensor fields. (See Sommers (1973) and references cited there.) Let S be 
such a tensor field of valence m, given in some coordinate patch on M by components 
91 . . . i , qq  1, . . . ,4"). Denote the homogeneous function of order m in momentum 

S i ' - i m ( q ) p i ,  . . . p i ,  E C(S),  (2.1) 

and denote T("M the space of all such tensor fields S on M .  If U E T'")M, then the 
Schouten concomitant [ S ,  U ]  is the tensor of order m+n- 1 given by 

(2.2) [s, u]i~ ... i ,  + - I = m s r ( i l . . . i m  - ld,uim...im + "  - I )  - ,U r(i1 ... in- l d r s i n . . . i n c m -  I )  

where the round brackets indicate symmetrization of the enclosed indices. The con- 
comitant is related to the Poisson bracket by 

(2.3) 

We shall make a convenient abuse of notation by writing C ( S ) + C ( U )  as C ( S + U ) ,  
even when S and U have different valence. 

* (C(S) ,  C ( U ) }  = -C( [S ,  U ] ) .  

We shall suppose that the Hamiltonian is 

H(q,  p )  = C(+h- + A + V )  (2.4) 
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where h-' E T'"M, A E T ( ' ) M ,  V E  T'O'M. The equation of motion is then 

(2.5) 
d 
dt 
-C(S) = C ( [ + h - ' + A + V , S ] ) .  

In order to develop the Lagrangian formulation of classical mechanics in terms of the 
Schouten algebra we must first express in these terms the variation 6,,C(S) of C(S) 
which arises when we make the usual Lagrangian variations of coordinates and velocities 

q'( t )  -+ + f(f)Xi(q(t)), q' + q'+(fXi(q))., (2.6) 

in the action integral (1.1). Here c(t)is an arbitrary real C 2  function of time which vanishes 
at t o  and f and X is an arbitrary vector field on M .  In view of equation (2,1), we must 
first express the momenta pi in terms of the velocities q j .  By equation (2.5), 

so that 

pi  = h,,(Cj'-A'). 

We do not assume that h is the metric tensor g which raises and lowers suffices. Thus 

( h -  = gilgj,(h- 

differs from h i j .  
If the valence u(S)  = 0, S is a scalar field on M and S = C(S) and 

as 
8qk 

6,,C(S) = -fXk = fC([X, SI). 

a a 
a4 a q k  

6,, C( S )  = f Xk , C(S) f ( CXk + f X k ) -  C( S )  

= fc([x,  S] + S J hL [h-  ', x ]  + S A  hL [ A ,  x] )  + t c ( x J  hL S )  (2.10) 

where X J ~ L S  is the scalar field XahabSb. Similarly one finds that if u(S) = 2 then 

6,,C(S) = fC([X, S] i- [h- ', x ] A  hL s+ S J h L  [h -  ', x ]  + 2s  J hL [ A ,  x])  

+ 2tC(X _I h L S) .  (2.1 1) 

Let us suppose that the quantities C(S) vary with time according to equations (2.5). 
Given this time dependence, we now pose the problem : find a Lagrangian 

L = c(~(2)  + ~ ( 1 )  + p)) (2.12) 

where L")E T")M such that the action integral (1.1) is stationary with respect to the 
variations (2.6), which are equivalent to the variations 6, defined in equations (2.9-1 1). 
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The argument proceeds exactly as in 5 4 of paper 111 except that the symbol Q there is 
replaced by the symbol C. We obtain the Euler--Lagrange equation 

(2.13) d 
dt 

C( N )  = - C(X J h L (2L"' + L"')) 

where 

N = [ x ,  J! , '~ '+L(')+L(~)] + [h - ' ,  X] J h L  L'2'+L(2'JhL [ h - ' ,  X] +I!,"' J h L  [h -  ', x] 
+(2L"'+L"')JhL [A ,  XI. (2.14) 

The right-hand side of equation (2.13) is given by the Hamilton equation of motion (2.5), 
so that using (2.3) we may write 

(2.15) 

Dropping the symbols C and equating tensors of equal valence in equation (2.15) we 
obtain 

[x, L"'] 4- [h-  ', x ] i  h L  L"'+J!,'~'_(~L [h -  (2.16) 

C ( N )  = C([ ih -  + A + v, x J h L (2L"'+ L"')]), 

x] = [)h- ', x J h L  2L"'] 

(2.17) 

[ X ,  L'O'] + L"' J h L [ A ,  X] = [ A ,  X 

the equation (2.16) as 

h L L" '1 + [ V, X J h L 2L"']. (2.18) 

The equations (2.16) and (2.17) do not depend on the metric g. We may re-express 

(2.19) 

where the suffices are raised and lowered with respect to the tensor field h regarded as a 
metric and the colon denotes covariant differentiations with respect to the metric h. We 
suppose that sufficient allowable variations X exist to span the tangent space at each 
point of the configuration manifold so that equation (2.19) implies 

x m ( ~ ( Z ) m i : j +  ~ ( 2 ) m j : i  - ~ ( 2 ) i j : m  ) = 0  

~ ( 2 ) m i : j + ~ ( 2 ) m j : i - ~ ( Z ) i j : m  = 0 

and thus (by interchanging m and i in this equation and adding the results) 

~ ( 2 ) m i : j  - - 0 

We shall suppose that h is an indecomposable tensor on M ;  it then follows from a 
theorem of Eisenhart (1923) that 

(2.20) L'2' = Lib- 1 
2 

where ,? is a constant. Substitution of this result into equation (2.17) yields 

X,(V-L'")"" = 0 

L L " '  = 0 (2.21) 

whence 

where X ,  stands for h,,X" and V denotes covariant differentiation with respect to the 
metric h. We next suppose that the configuration manifold M is simply connected. 
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Then equation (2.21) implies that L"' is the h-gradient of some scalar field 4, 

(2.22) d 
dt 

C(L'1') = C([ th- ' ,  41) = - C ( $ ) - C ( A 4 ) .  

The equation (2.18) now reduces to 

[X,L'O'-Af#)+IV] = 0 

L'O' = -AV+A+. 

so that 

(2.23) 

Thus for the motion governed by the Hamiltonian (2.4), the most general Lagrangian 
which obeys the Euler-Lagrange equation (2.13) for all vector fields X is 

d 
dt 

(2.24) L = Ac(ih-1- V)+-C@) 

where 4 is an arbitrary scalar field and A is an arbitrary constant. 

3. Transition to quantum mechanics 

In paper 111 we introduced the algebra % of quantum-mechanical observables (QMO) 
Q(S). To each function C(S) defined in the previous section on classical phase space, we 
introduced the corresponding QMO Q(S), and postulated the equal-time commutation 
relations 

[Q(s), Q(Wl = -iQ([s, ul) ifu(S)+r;(U) d 2 (3.1) 

[Q(g- '), Q(S)] = -iQ([g- ', SI) (3.2) if u(S) = 1. 

The equation (3.1) is canonical in the sense that the commutator of the QMO of C(S) and 
C( U )  is equal to i times the QMO of the Poisson bracket 

{ C(S), CW)} = - N S ,  VI). 

Unfortunately, this rule cannot be extended to tensors S ,  U of arbitrary valence. In 
particular we have shown (Bloore and Routh 1974b) that equations (3.1) and (3.2) imply 
that for u ( h - ' )  = 2, u(X) = 1, 

[QW '1, Q(X)l = - iQ([h- ', X])+;Q(div[h-', div XI-A Tr[h-', XI- [X, A Tr h-']) i 

= - iQ([h- ', XI) + 'Q(div[h- ', Tr r?] - 2A Tr(h- ' _J g L 8) 
8 

+ 2  div[8, Tr h- '3 - [[ig- ', Tr 81, Tr h -  'I) 
= -i(Q([h-', X])+Q(Rem(h-', 2))). (3.3) 

Here denotes the second-order tensor field [g- ', XI and the second line of equation 
(3.3) may be obtained from the first by use of the symmetry of the Ricci tensor. Note 
that the scalar field Rem(g- ', 8) vanishes for all X so that equation (3.3) indeed reduces 
to the canonical equation (3.2). 
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We now consider a quantum-mechanical system whose time development is given 
by the Heisenberg equation of motion 

where 

Q ( H )  = Q(4h-l + A +  V )  (3.5) 
and A,  V are prescribed vector and scalar fields on the configuration manifold M of the 
system. As in paper 111, to each vector field X on M we define a 'variation' Jcx on 2I 
which is the same as the variation a,, given by equations (2.9-1 1) but with C replaced 
by Q. In paper I11 we treated the usual case h = g .  We shall show here that, if h # g, 
the non-canonical nature of the commutation relation (3.3) prevents the construction 
of a Lagrangian whose action is stationary with respect to all variations sSx .  

As in paper 111 we seek a (quadratic) quantum-mechanical Lagrangian 

Q(L) = Q(L'"+L"'+L'O') 

whose action is stationary for the variations sCx : 

We are led to the Euler-Lagrange equation analogous to equation (2.13), 

d 
Q ( N )  = GQ(X~hL(2L '2 '+L ' ' ' ) )  (3.6) 

with N given by equation (2.14). The right-hand side of equation (3.6) is given by (3.4) 
and (3.5) so that 
Q ( N )  = i[Q(+h-'+A+ V),"XJhL(2L'2'+L'''))] 

= Q([th-  ' + A + V, X 1 h L (2L") + L''))]) + Q(Rem(fh- ', (X J h L 2~5'~))"))  
(3.7) 

where we have used equations (3.3) in the second line. Dropping the symbols Q and 
equating tensors of equal valence in equation (3.7) gives again the equations (2.16) and 
(2.17) but equation (2.18) has the extra term Rem(ih-', ( X J h L  2~!,'~')") on the right- 
hand side. The equations (2.16) and (2.17) imply as before that 

L'2' = +Ah-' 5 L'" = [ i h - ' ,  $1 
and then equation (2.18) reduces to 

[X,L'O'-A$+AV] = ARem($h-',x). (3.8) 
We regard equation (3.8) as an equation for L'O' in terms of the fields h- ' ,  A ,  V which 
appear in the Hamiltonian. We would like the vector field X which characterizes the 
variation to be as arbitrary as possible. For a general tensor field h - ' ,  the right-hand 
side of equation (3.8) cannot be cast in the form [X, $3 where $ is a scalar field. The 
class of allowable variations X which is common to all choices of h -  ' in the Hamiltonian 
is the class for which 3 vanishes, that is the variations corresponding to Killing vector 
fields. The solution of equation (3.8) for L'O' is then equation (2.23) and the Lagrangian 
is (2.24) with C replaced by Q .  In the case h = g discussed in paper 111, Rem(+g-', 3) 
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vanishes for all X as noted before, so that all vector fields are then allowable and not just 
the Killing ones. 

One might perhaps argue that one can make the equation (3.3) canonical byfiat in 
the case when the Hamiltonian is ( 3 3 ,  simply by taking the canonical commutation 
relation (3.2) to hold for h -  rather than for g -  '. The overwhelming argument against 
this is that equal-time commutation relations of coordinates with momenta are kine- 
matical in nature and should not depend on the choice of the velocity dependent potential 
which is applied but only on the characteristics of the configuration manifold of the 
system. 
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